Chronic suppression of angiogenesis following radiation exposure is independent of hematopoietic reconstitution.

نویسندگان

  • Taturo Udagawa
  • Amy E Birsner
  • Mark Wood
  • Robert J D'Amato
چکیده

Radiation can potentially suppress neovascularization by inhibiting the incorporation of hematopoietic precursors as well as damaging mature endothelial cells. The purpose of these studies was to quantify the effect of radiation on angiogenesis and to examine the relationship between bone marrow reconstitution and neovascularization. Immune competent, severe combined immunodeficient, RAG1-deficient, and green fluorescence protein transgenic mice in the C57 genetic background, as well as the highly angiogenic 129S1/SvlmJ strain of mice, underwent whole-body or localized exposure to radiation. The hematopoietic systems in the irradiated recipients were restored by bone marrow transfer. Hematopoietic reconstitution was assessed by doing complete blood counts. Angiogenesis was induced in the mouse cornea using 80 ng of purified basic fibroblast growth factor, and the neovascular response was quantified using a slit lamp biomicroscope. Following whole-body exposure and bone marrow transplantation, the hematopoietic system was successfully reconstituted over time, but the corneal angiogenic response was permanently and significantly blunted up to 66%. Localized exposure of the eyes to radiation suppressed corneal angiogenesis comparably to whole-body exposure. Whole-body irradiation with ocular shielding induced bone marrow suppression but did not inhibit corneal neovascularization. In mice exposed to radiation before tumor implantation, the reduced local angiogenic response correlated with significantly reduced growth of tumor cells in vivo. These results indicate that bone marrow suppression does not suppress neovascularization in the mouse cornea and that although hematopoietic stem cells can readily reconstitute peripheral blood, they do not restore a local radiation-induced deficit in neovascular response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation.

A nuclear disaster may result in exposure to potentially lethal doses of ionizing radiation (IR). Hematopoietic acute radiation syndrome (H-ARS) is characterized by severe myelosuppression, which increases the risk of infection, bleeding, and mortality. Here, we determined that activation of nuclear factor erythroid-2-related factor 2 (NRF2) signaling enhances hematopoietic stem progenitor cell...

متن کامل

Hematopoietic cell crisis: an early stage of evolving myeloid leukemia following radiation exposure.

Under select radiological conditions, chronic radiation exposure elicits a high incidence of myeloproliferative disease, principally myeloid leukemia (ML), in beagles. Previously we demonstrated that for full ML expression, a four-stage preclinical sequence is required, namely (I) suppression, (II) recovery, (III) accommodation, and (IV) preleukemic transition. Within this pathological sequence...

متن کامل

XWH - 12 - 1 - 0477 TITLE : Reducing toxicity of radiation treatment of advanced prostate cancer

Bone marrow suppression due to ionizing radiation is a significant clinical problem in radiation therapy andfollowing non-medical radiation exposure. Currently, no small molecule agents that can enhance hematopoieticregeneration following radiation exposure are available. Here, we report the effective mitigation of acutehematopoietic radiation syndrome in mice by the synthetic trite...

متن کامل

Pleiotrophin mediates hematopoietic regeneration via activation of RAS.

Hematopoietic stem cells (HSCs) are highly susceptible to ionizing radiation-mediated death via induction of ROS, DNA double-strand breaks, and apoptotic pathways. The development of therapeutics capable of mitigating ionizing radiation-induced hematopoietic toxicity could benefit both victims of acute radiation sickness and patients undergoing hematopoietic cell transplantation. Unfortunately,...

متن کامل

Inhibiting TGFβ1 has a protective effect on mouse bone marrow suppression following ionizing radiation exposure in vitro

Ionizing radiation (IR) causes not only acute tissue damage but also residual bone marrow (BM) suppression. The induction of residual BM injury is primarily attributable to the induction of reactive oxygen species (ROS) pressure in hematopoietic cells. In this study, we examined if SB431542, a transforming growth factor β1 (TGFβ1) inhibitor, can mitigate IR-induced BM suppression in vitro. Our ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 67 5  شماره 

صفحات  -

تاریخ انتشار 2007